Slow and sustained release of active cytokines from self-assembling peptide scaffolds.
نویسندگان
چکیده
Controlling the cellular microenvironment is thought to be critical for the successful application of biomaterials for regenerative medicine strategies. Self-assembling peptides are proving to be a promising platform for a variety of regenerative medicine applications. Specifically, RADA16-I self-assembling peptides have been successfully used for 3D cell culture, accelerated wound healing, and nerve-repair. Understanding the fundamental mechanisms for protein mobility within, and ultimately release from, this nanostructured system is a critical aspect for controlling cellular activity; studies which are largely lacking within the literature. Herein, we report that designer self-assembling peptide scaffolds facilitate slow and sustained release of active cytokines that are extremely relevant to many areas of regenerative medicine. In addition, multiple diffusive mechanisms are observed to exist for human betaFGF, VEGF and BDNF within RADA16-I and two different RADA16-I nanofiber forming peptides with net positive or negative charges located at the C-terminus. In some cases, two populations of diffusing molecules are observed at the molecular level: one diffusing fully within the solvent, and another that exhibits hindered mobility. Results suggest that protein mobility is inhibited by both physical hinderances and charge induced interactions between the protein and peptide nanofibers. Moreover, assays using adult neural stem cells (NSCs) are employed to assess the functional release of active cytokine (betaFGF) up to three weeks. Our results not only provide evidence for long-term molecular release from self-assembling peptide scaffolds but also inspiration for a plethora of slow molecular release strategies for clinical applications.
منابع مشابه
Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds
Bioactive mediators, cytokines, and chemokines have an important role in regulating and optimizing the synergistic action of materials, cells, and cellular microenvironments for tissue engineering. RADA self-assembling peptide hydrogels have been proved to have an excellent ability to promote cell proliferation, wound healing, tissue repair, and drug delivery. Here, we report that D-RADA16 and ...
متن کاملP 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs
Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...
متن کاملO13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کاملDesigner self-assembling peptide scaffolds for 3-d tissue cell cultures and regenerative medicine.
Biomaterial science has made enormous progress in the last few decades. Nonetheless, innovative biomaterials are still urgently needed to provide in vitro cell-culture models that more closely resemble three-dimensional (3-D) cell interactions and cyto-architectures in bodies and tissues. In this review, the recent advances toward this goal through molecular engineering of various designer self...
متن کاملSelf-organization of a chiral D-EAK16 designer peptide into a 3D nanofiber scaffold.
Self-assembling peptide nanofiber scaffolds are an excellent material for applications such as tissue repair, tissue regeneration, instant stopping of bleeding, and slow drug release. We report a new self-assembling peptide D-EAK16 consisting purely of D-amino acids. D-EAK16 and L-EAK16 display mirror-image CD spectra at 20 degrees C. Like L-EAK16, D-EAK16 self-assembles into nanofibers, thus d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 145 3 شماره
صفحات -
تاریخ انتشار 2010